
Greetings!

Thank you for your interest in Advanced FPS Counter, tiny counters-on-steroids set for Unity3D!

Please read carefully through this document to know more about each counter and all plugin
features in general.

Full API documentation can be found here:
codestage.net/uas_files/afps/api/

Contents

- Installation and setup
- Common Settings
- Counters Settings
- FPS Counter settings
- Memory Counter settings
- Device Information Counter settings
- Tips
- Compatibility
- Troubleshooting
- Final words from author
- Useful links

v. 1.5.4
[version history]

https://codestage.net/uas_files/afps/api/
https://codestage.net/uas_files/afps/changelog.txt

Installation and setup

IMPORTANT:

To avoid different compatibility issues and errors, always remove previous version from project Assets before updating.

As you import plugin, you have such options for adding Advanced FPS Counter to your scenes:

• Drag CodeStage/AdvancedFPSCounter/Prefabs/Advanced FPS Counter prefab to the Scene Hierarchy.

Hint:

You also may find prefabs from the Examples/Prefabs folder useful for the VR or World Space setup.

• Add from the Scene Hierarchy context menu (or Game Object menu):

Create Other > Code Stage > Advanced FPS Counter

• Add AFPSCounter component to any existing Game Object using Add Component button or just drag dropping it from
Project Browser:

"Add Component" button > Code Stage > Advanced FPS Counter

• Add to scene from code using AFPSCounter.AddToScene() API

Hint:

You need to add namespace CodeStage.AdvancedFPSCounter to usings in order to work with plugin from code.

Here is a simple example:

// place this line right at the beginning of your .cs file!
using CodeStage.AdvancedFPSCounter;

// ...
private void Start()
{
 // instantiates AFPSCounter in scene if it not exists
 // with disabled keepAlive option
 AFPSCounter.AddToScene(false);

 // changes spacing between counters
 AFPSCounter.Instance.CountersSpacing = 1;
}

AFPSCounter draws all its data using Labels, which are the uGUI Texts placed within the automatically generated Canvas
with Screen Space - Overlay mode.
Thus, in order to see the counters, you do not need to perform any additional actions in most cases.

IMPORTANT:

If you will place AFPSCounter somewhere inside the existing Canvas, auto-generated one will inherit options from the
parent. This is useful when you wish to use plugin in some special environment, such as a World Canvas in the VR project.

Please refer to the Troubleshooting section below if you do not see the counters after performing initial setup.

https://codestage.net/uas_files/afps/api/class_code_stage_1_1_advanced_f_p_s_counter_1_1_a_f_p_s_counter.html
https://codestage.net/uas_files/afps/api/class_code_stage_1_1_advanced_f_p_s_counter_1_1_a_f_p_s_counter.html#a7619849e710568e5c4560e8da7d0d910

Plugin features in-depth

Common Settings

Operation Mode: controls how AFPSCounters runs.

• Disabled mode is used to remove all counters and stop all internal
processes except the global hotkey / gesture listener.

• Normal mode should be used in most cases: counters are visible and
operate as intended.

• Background mode allows reading all enabled counters data using
Scripting API without uGUI output thus avoiding any additional
resources usage. Useful for performance / hardware stats, for hidden
performance monitoring and quality settings suggestion, etc.

Hot Key: customizable global hotkey to show / hide plugin using
Disabled / Normal Operation Mode switch. Does not affect Background
Operation Mode.

Circle Gesture: complements Hot Key and does same job.
Touch screen / touchpad or hold left mouse button and make ~2
circles in any direction to switch Operation Mode.

Keep Alive: allows keeping Advanced FPS Counter’s Game Object on new
scene load (using DontDestroyOnLoad).

IMPORTANT:

The topmost root Game Object will be kept alive if AFPSCounter is
placed on the nested Game Object.

Force FPS: allows trying your game at specified frame rate, may help to
debug your game behavior / physics on slow devices; specified frame
rate is not guaranteed though (and may not work at all).

Look & Feel settings

Auto Scale: controls Canvas’s CanvasScaler uiScaleMode.
When disabled, uses ConstantPixelSize with specified Scale Factor.
When enabled, uses ScaleWithScreen.

Labels Font: font used to render counters in Labels (uGUI Texts).
Monospace font with Bold style support usually looks great.

Font Size: controls size of the used Font.

Line Spacing: controls space between lines in single Label using uGUI Text
LineSpacing.

Counters Spacing: empty lines count between different counters in same
Label.

Padding Offset: offset for the Labels placement. Relative to the Anchor
position set at the per-counter settings and automatically changes sign
for the right and bottom Labels.

Pixel Perfect: controls own Canvas PixelPerfect property in overlay
modes.

Background: colored background effect with customizable Color and
Padding. Costs only 1 Draw Call. Fair deal for better visibility.

Shadow & Outline: text rendering effects with customizable Color and
Distance. These are resources-heavy (especially outline) so use with
caution on mobile devices.

https://docs.unity3d.com/ScriptReference/Object.DontDestroyOnLoad.html
https://docs.unity3d.com/ScriptReference/UI.CanvasScaler.html
https://docs.unity3d.com/ScriptReference/UI.CanvasScaler.ScaleMode.ConstantPixelSize.html
https://docs.unity3d.com/ScriptReference/UI.CanvasScaler.ScaleMode.ScaleWithScreenSize.html
https://docs.unity3d.com/ScriptReference/UI.Text-lineSpacing.html
https://docs.unity3d.com/ScriptReference/Canvas-pixelPerfect.html
http://pastebin.com/KCYJMYz5

Advanced settings

Sorting Order: controls Canvas’s sortingOrder property.
With higher value Canvas gets closer to the user while sorting with
other canvases.

Counters settings

Common per-counter settings

All counters have same per-counter settings:

Interval: delay between counter updates, in seconds. Recommended
value lays in 0.5 - 1 secs range. Only updatable counters have this
setting.

Anchor: specifies counter screen placement within one of these Labels:
Upper Left, Upper Center, Upper Right
Lower Left, Lower Center, Lower Right
It allows covering all corners, top and bottom of the screen.
All counters with same anchor are drawn within one Label, thus, one
Label may contain several Counters. Labels content is refreshed (and
reassembled) only if any containing Counter is marked as dirty (has
changed value since last update). It allows avoiding unnecessary waste
of resources.

Color: counter text color. FPS Counter has more complex text coloration
with three coloration ranges - for normal, warning and critical value.

Style: counter text style with these values:
Normal, Bold, Italic, Bold and Italic

Note: Not all fonts support these styles.

FPS (Frames Per Second) Counter

This Counter shows current FPS and many
additional optional metrics.

Here are all Counter settings in same order as you see them in Inspector:

Common settings section, with more flexible Color Range selection for
three FPS value ranges: normal, warning and critical.

Realtime FPS: shows actual FPS. In some cases, you might want to see
only Average FPS for example, so you can disable realtime FPS here.

• Milliseconds: shows an approximate time spent to process one frame.
Available for all FPS metrics.

Average FPS: shows an averaged FPS using accumulates samples.
Notable sub-settings are:

• Samples: controls how much of last FPS readouts to use for average
calculation. More samples - more slow and smooth average value
change. Use 0 value to collect all FPS samples since last Average FPS
reset (optimized calculation will be used in such case).

• Auto Reset: resets this FPS metric and cleans accumulated samples on
scene load.

Game View

https://docs.unity3d.com/ScriptReference/Canvas-sortingOrder.html

MinMax FPS: shows minimum and maximum FPS.
Notable sub-settings are:

• Delay: "pre-warm" amount of Interval updates to wait before starting
Min /Max registration. Allows skipping initialization FPS spikes.

• Auto Reset: resets this FPS metric on scene load.

Render Time: shows approximate time spent by Camera(s) to render last
frame. Requires usage of the helper AFPSRenderRecorder component.
Add it to Game Objects with Camera(s) you wish to measure render
time for, or use the Auto add option to let AFPSCounter automatically
add AFPSRenderRecorder component to the Game Object with "Main
Camera" tagged Camera if your scene has it.
Helper component will be re-added to the Main Camera’s Game Object
after scenes switch if Keep Alive option is used (see below).

Note: does not take into account Image Effects and IMGUI.

Memory Counter

This Counter shows different memory usage
information.

Here are all Counter settings in same order as you see them in Inspector:

Common settings section.

Precise: allows to output memory values with additional accuracy using
float values instead of int ones. Requires some extra resources though,
thus try to avoid using it in conjunction with low update interval.

Total: shows total private memory amount, reserved by OS for the
application. Other applications cannot use this memory.
Applications may ask OS to reserve some amount of private memory,
which is usually a bit more than they really use at that moment. This
allows making new allocations faster if reserved memory chunk has
enough space for them.

Allocated: shows amount of private memory currently actually used by
application. In other words - how much memory all your textures,
sounds, etc. use.

Mono: shows amount of memory, allocated by the managed objects, such
as UnityEngine.Object (and everything derived from it), your classes,
etc. This memory is called managed because the lifecycle of objects is
managed by the runtime - it automatically allocates and frees memory
for the objects. Garbage Collector frees memory allocated by
unreferenced objects automatically so you do not need to manage
them yourself. IL2CPP builds have managed objects and Garbage
Collector as well.

GfxDriver: shows amount of the allocated memory for the graphics driver.
This feature requires Unity 2018 or newer and works in Development
builds or Editor only.

Game View

https://codestage.net/uas_files/afps/api/class_code_stage_1_1_advanced_f_p_s_counter_1_1_utils_1_1_a_f_p_s_render_recorder.html

Device Information Counter

This Counter shows different information about current device and
environment where your app or game is running.

Here are all Counter settings in same order as you see them in Inspector:

Common settings section without interval setting since this counter
updates only once on start.

Platform: outputs Operating System name with version (if possible) and

runtime platform type.

CPU: outputs CPU model and cores count (including virtual cores from
Intel’s Hyper Threading).

GPU Model: outputs GPU model name.

GPU API: outputs graphics API name, version and type (if possible).

GPU Spec: outputs graphics shader model (if possible) and total VRAM (if
possible).

RAM: outputs total RAM on current device in Megs.

Screen: outputs resolution with refresh rate, current window size and
screen DPI (if possible).

Model: outputs device model (if possible). Mostly handy on the mobile
devices.

Game View (PC)

Game View (Mobile)

Tips

• All plugin features and counters values are available from code through the public APIs. It allows to make a totally

custom UI for the counters - you may use any non-standard UI framework, output to charts and graphs, etc.

• Please, take a look at the ExampleScene (at the Examples folder) to see how to work with plugin from code and check
how you can alter AFPSCounter’s settings and setup at runtime.

• While Unity didn’t introduce better way to save values set at runtime, you may easily tune counters (colors, intervals,
etc.) in Play mode and save adjusted values using these steps:
- enter Play mode
- tune AFPSCounter component settings in inspector
- right-click on the AFPSCounter component’s header and select "Copy Component"
- exit Play mode
- right-click on the AFPSCounter component’s header and select "Paste Component Values"
This technique works for any other components as well.

• To enable and disable whole AFPSCounter from code just use AFPSCounter.Instance.OperationMode property (switch
it between AFPSCounterOperationMode.Disabled and AFPSCounterOperationMode.Normal).

• You may add any text to any counter using ExtraText API. For example:

AFPSCounter.Instance.fpsCounter.ExtraText = "Temp: <color=#A76ED1>40</color>";

Counter will be immediately updated after calling this API. To remove text, just pass null. Rich Text is supported.

Compatibility

Plugin should work fine on any platform, including WebGL and VR and it was tested on these platforms:

PC (Win, Mac, Linux, WebGL), iOS (incl. Google Cardboard), Android (incl. Gear VR, Google Cardboard, Vive Focus),
Windows Universal Platform.

In addition, customers reported it as working on these:

Wii U devkit (thx Black Lodge Games), Xbox One (thx Yaroslav Bakhvalov).

Please report if plugin does not work for you on some specific platform.

All features should work fine with any stripping level, IL2CPP runtime, .NET 4.6 compiler and Assembly Definitions.

Troubleshooting

• I cannot see AFPSCounter on the screen

- Make sure you have added it to the current scene (either in Editor or from code).
- Make sure it is enabled and active.
- Check console for any error messages or warnings.
- Make sure your Canvas Sorting Order has value lower than AFPSCounter’s Sorting Order advanced setting value.
- If you are working with VR, place AFPSCounter inside an existing Canvas with World Space Render Mode to make it

visible in your VR device (see Examples/Prefabs/VR Example).

• Something is wrong with the font I use for the counters
- Unity had a bug, which led to the exclusion of the font styles in case you are using different font files for the

different styles. Please try updating your Unity version to check if it fixes this issue for you.

• I see GC allocations from AFPSCounter
- Relatively low amount of GC allocations is expected in the Normal operation mode as it uses UGUI Text which do

not allow to use char[] instead of string to prevent GC allocations. You may use Background operation mode (which
does not produce GC allocations while running) to make your own GC-free visualization.

https://codestage.net/uas_files/afps/demo/
http://blacklodgegames.com/
http://www.medungeon.com/

Final words from author

I hope you will find Advanced FPS Counter helpful and it will save some of your priceless time!
Please, leave your reviews at the plugin’s Asset Store page and feel free to drop me bug reports, feature suggestions and
other thoughts on the forum or via support contacts!

AFPSCounter links:

Asset Store | Web Site | Forum | API | YouTube

Support contacts:
E-mail: support@codestage.net
Other: codestage.net/contacts

Follow for updates and news:

@codestage_net
@codestage

Best wishes,
Dmitriy Yukhanov
Asset Store publisher
codestage.net

P.S. #0 I wish to thank my family for supporting me in my Unity Asset Store efforts and making me happy every day!
P.S. #1 I wish to say huge thanks to Daniele Giardini (DOTween, HOTools, Goscurry and many other happiness generating
things creator) for priceless feedback on this plugin!

https://assetstore.unity.com/packages/slug/14656?aid=1011lGBp&pubref=readme_afps
https://codestage.net/uas/afps
http://forum.unity3d.com/threads/228006-Advanced-FPS-Counter-RELEASED
https://codestage.net/uas_files/afps/api/
https://www.youtube.com/playlist?list=PLbTYvIYxIXSj2sZcJWVJFuwP_IHXOQkPZ
mailto:support@codestage.net
https://codestage.net/contacts/
https://twitter.com/codestage_net
https://www.facebook.com/codestage/
https://assetstore.unity.com/publishers/3918?aid=1011lGBp&pubref=readme_afps
https://assetstore.unity.com/publishers/3918?aid=1011lGBp&pubref=readme_afps
https://codestage.net/
https://twitter.com/demigiant
http://dotween.demigiant.com/
http://www.demigiant.com/plugins/hotools/
http://www.goscurry.com/

